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Quadratic Residues & Non-residues

Let p be an odd prime and a ∈ Z such that p - a. We say that a is a
quadratic residue (mod p) if the congruence equation x2 ≡ a (mod p) is
soluble in Z, i.e., a ∈ F×2

p .

An integer a ∈ Z is called a quadratic non-residue (mod p) if a ∈ F×
p \F×2

p .

Examples

1 32 ≡ 2 (mod 7)⇒ 2 is a quadratic residue (mod 7);

2 F×2
17 = {±1,±2,±4,±8} ⇒ 3 is a quadratic non-residue (mod 17).

Facts

1 For any odd prime p, #F×2
p = #(F×

p \ F×2
p ) = (p − 1)/2.

2 R × R = R, N × N = R, and R × N = N.
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The Legendre Symbol

We define the Legendre symbol by

(
a

p

)
=


1, if a ∈ F×2

p ,

− 1, if a ∈ F×
p \ F×2

p ,

0, if p | a.

Then Fact 2 can be reformulated as(
ab

p

)
=

(
a

p

)(
b

p

)
for a, b ∈ F×

p .

Proposition 1.1 (Euler’s Criterion)

Let p be an odd prime and a ∈ Z such that p - a. Then(
a

p

)
≡ a

p−1
2 (mod p).
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The Law of Quadratic Reciprocity

Theorem 1.2 (Euler)

For any odd prime p,
(
2
p

)
= (−1)

p2−1
8 .

Theorem 1.3 (Law of Quadratic Reciprocity)

Let p and q be distinct odd primes. Then(
p

q

)(
q

p

)
= (−1)

p−1
2

· q−1
2 .

Example

3 is a quadratic non-residue (mod 17), because(
3

17

)
=

(
17

3

)
=

(
2

3

)
= −1.
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Counting Proofs of Theorem 1.3

There are now over 240 published proofs!

1 Induction

2 Binary quadratic forms

3 Gauss sums

4 Lattice points counting

5 Trigonometric functions

6 Galois theory applied to
cyclotomic fields

7 Matrix theory

8 Fourier analysis on Z/NZ

9 Dedekind sums

10 Brauer groups

11 K -groups

12 Formal groups

13 Theta functions

14 Recurring sequences

15 Elliptic curves

16 Quaternion algebras
. . .

I will present a simple, elementary proof, essentially due to Schur, based
on tools from linear algebra.
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Starting with A Matrix

It all starts with the symmetric matrix A = (ζrsn ):

A =



1 1 1 1 . . . 1
1 ζn ζ2n ζ3n . . . ζn−1

n

1 ζ2n ζ4n ζ6n . . . ζ
2(n−1)
n

1 ζ3n ζ6n ζ9n . . . ζ
3(n−1)
n

...
...

...
...

. . .
...

1 ζn−1
n ζ

2(n−1)
n ζ

3(n−1)
n . . . ζ

(n−1)2

n


,

where n ∈ N is odd and ζn := e2πi/n.

Note that A is an n × n
Vandermonde matrix with trace

tr(A) =
n−1∑
r=0

ζr
2

n .
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The Magic within A2

One can compute

A2 =



n 0 0 . . . 0 0 0
0 0 0 . . . 0 0 n
0 0 0 . . . 0 n 0
0 0 0 . . . n 0 0
...

...
...

. . .
...

...
...

0 n 0 . . . 0 0 0


.

Note that A2/n is a permutation matrix with determinant (−1)
n−1
2 . So

det(A2) = (−1)
n−1
2 nn.
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The Determinant of A

We compute the determinant of A as follows:

det(A) =
∏

0≤s<r≤n−1

(ζrn − ζsn) =
∏

0≤s<r≤n−1

ζr+s
2n

(
ζr−s
2n − ζ

−(r−s)
2n

)
.

Observe

2
∑

0≤s<r≤n−1

(r + s) =
∑

0≤s<r≤n−1

(r + s) +
∑

0≤r<s≤n−1

(r + s)

=
n−1∑
r ,s=0

(r + s)−
n−1∑
r=0

2r

= 2n
n−1∑
r=0

r − 2
n−1∑
r=0

r

= 2(n − 1) · n(n − 1)

2
= n(n − 1)2.
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The Determinant of A

So ∑
0≤s<r≤n−1

(r + s) = 2n

(
n − 1

2

)2

∈ N.

Hence
det(A) =

∏
0≤s<r≤n−1

(
ζr−s
2n − ζ

−(r−s)
2n

)
= i

n(n−1)
2 Pn,

where

Pn :=
∏

0≤s<r≤n−1

2 sin
(r − s)π

n
> 0.

It is clear that det(A2) = det(A)2 = (−1)
n−1
2 P2

n . But we just proved that

det(A2) = (−1)
n−1
2 nn. Therefore, Pn = n

n
2 and det(A) = i

n(n−1)
2 n

n
2 .
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The Trace of A

Recall that

tr(A) =
n−1∑
r=0

ζr
2

n .

From this it follows that

|tr(A)|2 =
n−1∑
r ,s=0

ζr
2−s2

n =
n−1∑
r ,s=0

ζ
(r+s)(r−s)
n

=
n−1∑
t=0

n−1∑
s=0

ζ
(t+2s)t
n (t = r − s)

= n,

which gives |tr(A)| =
√
n.
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The Magic Continues!

Let us revisit

A2 =



n 0 0 . . . 0 0 0
0 0 0 . . . 0 0 n
0 0 0 . . . 0 n 0
0 0 0 . . . n 0 0
...

...
...

. . .
...

...
...

0 n 0 . . . 0 0 0


.

One can show that A4 = n2I and that A2 has eigenvalues n with
multiplicity (n + 1)/2 and −n with multiplicity (n − 1)/2.

Suppose that A has eigenvalues ik
√
n with multiplicity ak for each

k ∈ {0, 1, 2, 3}. Then

a0 + a2 =
n + 1

2
and a1 + a3 =

n − 1

2
.
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The Magic Continues!

Since tr(A) = [(a0 − a2) + i(a1 − a3)]
√
n, we have

n = |tr(A)|2 = [(a0 − a2)2 + (a1 − a3)2]n,

which yields
(a0 − a2)2 + (a1 − a3)2 = 1.

Moreover,

i
n(n−1)

2 n
n
2 = det(A) =

3∏
k=0

(ik
√
n)ak = ia1+2a2+3a3n

n
2 ,

which implies

a1 + 2a2 + 3a3 ≡
n(n − 1)

2
(mod 4).

Steve Fan GSS Feburary 7th, 2023 14 / 21



The Magic Continues!

Since tr(A) = [(a0 − a2) + i(a1 − a3)]
√
n, we have

n = |tr(A)|2 = [(a0 − a2)2 + (a1 − a3)2]n,

which yields
(a0 − a2)2 + (a1 − a3)2 = 1.

Moreover,

i
n(n−1)

2 n
n
2 = det(A) =

3∏
k=0

(ik
√
n)ak = ia1+2a2+3a3n

n
2 ,

which implies

a1 + 2a2 + 3a3 ≡
n(n − 1)

2
(mod 4).

Steve Fan GSS Feburary 7th, 2023 14 / 21



The Trace of A

In summary, we have proved the following:
1

tr(A) =
n−1∑
r=0

ζr
2

n = [(a0 − a2) + i(a1 − a3)]
√
n.

2

a0 + a2 =
n + 1

2
and a1 + a3 =

n − 1

2
.

3

(a0 − a2)2 + (a1 − a3)2 = 1, ak ∈ Z≥0.

4

a1 + 2a2 + 3a3 ≡
n(n − 1)

2
(mod 4).

Combining these four facts, one can obtain

tr(A) =
n−1∑
r=0

ζr
2

n =

{ √
n, if n ≡ 1 (mod 4),

i
√
n, if n ≡ 3 (mod 4).
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Gauss Sums

For m ∈ Z and n ∈ N, we define

Sn(m) :=
n−1∑
r=0

ζr
2m

n ,

so that tr(A) = Sn(1).

Proposition 3.1

Given m, n ∈ N with gcd(m, n) = 1, we have Sm(n)Sn(m) = Smn(1).

Let p be an odd prime. We define the Gauss sum Gp(m) by

Gp(m) :=

p−1∑
r=0

(
r

p

)
ζrmp .

Clearly, Gp(m) = 0 if p | m.
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Gauss Sums

The relationship between S and G can be deduced as follows:

Sp(m) =

p−1∑
r=0

ζr
2m

p =

p−1∑
r=0

(
1 +

(
r

p

))
ζrmp = Gp(m).

Moreover, the values of Gp(m) are completely determined by (m/p) and
Gp(1):

Gp(m) =

p−1∑
r=0

(
r

p

)
ζrmp =

(
m

p

) p−1∑
r=0

(
rm

p

)
ζrmp

=

(
m

p

) p−1∑
r=0

(
r

p

)
ζrp =

(
m

p

)
Gp(1),

provided that p - m.
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Proof of Quadratic Reciprocity

Let p and q be distinct odd primes. We have seen that

Sp(1) = Gp(1) = tr(A) = δ(p)
√
p

for n = p, where

δ(p) =

{
1, if p ≡ 1 (mod 4),

i , if p ≡ 3 (mod 4).

By Proposition 3.1, we have

δ(pq)
√
pq = Gpq(1) = Gq(p)Gp(q) =

(
p

q

)(
q

p

)
Gq(1)Gp(1)

=

(
p

q

)(
q

p

)
δ(p)δ(q)

√
pq. Q.E .D.
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The fundamental theorem must
certainly be regarded as one of
the most elegant of its type.

— C. F. Gauss
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