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Quadratic Residues & Non-residues

Let p be an odd prime and a € Z such that pfa. We say that ais a
quadratic residue (mod p) if the congruence equation x> = a (mod p) is
soluble in Z, i.e., a € F}2.
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Quadratic Residues & Non-residues

Let p be an odd prime and a € Z such that pfa. We say that ais a
quadratic residue (mod p) if the congruence equation x> = a (mod p) is
soluble in Z, i.e., a € F}2.

An integer a € Z is called a quadratic non-residue (mod p) if a € Fj; \IF§2.

@ 32 =2 (mod 7) = 2 is a quadratic residue (mod 7);
@ F}? = {+1,42,+4, 48} = 3 is a quadratic non-residue (mod 17).
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Quadratic Residues & Non-residues

Let p be an odd prime and a € Z such that pfa. We say that ais a
quadratic residue (mod p) if the congruence equation x> = a (mod p) is
soluble in Z, i.e., a € F}2.

An integer a € Z is called a quadratic non-residue (mod p) if a € T \IF;2.

@ 32 =2 (mod 7) = 2 is a quadratic residue (mod 7);
@ F}? = {+1,42,+4, 48} = 3 is a quadratic non-residue (mod 17).

V.

Facts
Q For any odd prime p, #F32 = #(FX \F;?) = (p—1)/2.
Q@ RXR=R, NxN=R,and Rx N =N. )

Steve Fan GSS Feburary 72", 2023 3/21



The Legendre Symbol

We define the Legendre symbol by
1, if a e Fy2,
a . )
(p)_ -1, ifaeFJ\FJ%,
0, if p|a.
Then Fact @ can be reformulated as

3)-G)6)

fora, be ;.
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The Legendre Symbol

We define the Legendre symbol by

1, if a e Fy2,
a i 2
(p)_ -1, ifaeFJ\FJ%,
0, if p|a.

Then Fact @ can be reformulated as

3)-G)6)

fora, be ;.

Proposition 1.1 (Euler's Criterion)

Let p be an odd prime and a € Z such that p{a. Then

(3> = 2"2" (mod p).

p
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The Law of Quadratic Reciprocity

Theorem 1.2 (Euler)

For any odd prime p, <%) =(-1)7=% .
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The Law of Quadratic Reciprocity

Theorem 1.2 (Euler)

. 2 =1
For any odd prime p, <5) =(-1)"=

v

Theorem 1.3 (Law of Quadratic Reciprocity)

Let p and q be distinct odd primes. Then

B)@-cr
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The Law of Quadratic Reciprocity

Theorem 1.2 (Euler)

pzfl

For any odd prime p, <%) =(-1)7=% .

v

Theorem 1.3 (Law of Quadratic Reciprocity)

Let p and q be distinct odd primes. Then

<Z> <Z> = (-1)% %, |

3 is a quadratic non-residue (mod 17), because

(3)-()-0)--
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Counting Proofs of Theorem 1.3

There are now over 240 published proofs!

@ Induction © Dedekind sums

@ Binary quadratic forms @ Brauer groups

© Gauss sums @ K-groups

@ Lattice points counting @ Formal groups

© Trigonometric functions @® Theta functions

O Galois theory applied to @ Recurring sequences
cyclotomic fields ® Elliptic curves

@ Matrix theory @ Quaternion algebras

@ Fourier analysis on Z/NZ

| will present a simple, elementary proof, essentially due to Schur, based
on tools from linear algebra.
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Starting with A Matrix

It all starts with the symmetric matrix A = (¢/):

1 1 1 1 1

s A
1 C2 C4 C6 o Cg(”*l)
L B

where n € N is odd and ¢, 1= 27/,
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Starting with A Matrix

It all starts with the symmetric matrix A = (¢/):

1 1 1 1 1

O <
1 C2 C4 C6 o Cg(”*l)
1ot G G LY

where n € N is odd and ¢, := e2™/". Note that Ais an nx n
Vandermonde matrix with trace

n—1
tr(A) =Y _Ch.
r=0
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The Magic within A?

One can compute

n 0 0 00 0
00 0 0 0 n
, [00o0 0 n 0
A"=10 0 0 n 0 0
0 n 0 0 0 0
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The Magic within A?

One can compute

n 00 0 00
0 00 0 0 n
0 00 0 noO
A% =
0 00 n 00
0 n O ... 0 0 O]
Note that A2/n is a permutation matrix with determinant (—1)n51. So

n—1

det(A?) = (~1)"2 n".
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The Determinant of A

We compute the determinant of A as follows:

det()= I @-a= 11 515(57_5"(#5))'

0<s<r<n—-1 0<s<r<n-1
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The Determinant of A

We compute the determinant of A as follows:

det()= I @-a= 11 535(57_5"(#5))'

0<s<r<n—-1 0<s<r<n-1
Observe
2 Z (r+s)= Z (r+s)+ Z (r+s)
0<s<r<n—1 0<s<r<n—1 0<r<s<n—-1
n—1 n—1
- Sira-Ta
r,s=0 r=0

n—1 n—1
:2n2r—22r
r=0 r=0

:2(n—1)-n(nz_1):n(n—1)2.
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The Determinant of A

So

> (r+s):2n<n;1>2€N.

0<s<r<n—1
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The Determinant of A

So
n—1\?2
Z (r+s):2n< > > eN.
0<s<r<n—1
Hence o)
det(A) = [ (G -G ) =i P,

0<s<r<n—1

where
P, = H 2sin ﬂ > 0.
0<s<r<n-1 n

n—1

It is clear that det(A?) = det(A)? = (-1)2 P2.

n
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The Determinant of A

So
n—1\2
Z (r+s):2n< > > eN.
0<s<r<n—1
Hence o
det(A)= [ (G- 7)=i"" P

0<s<r<n—1

where
P, = H 2sin ﬂ > 0.
0<s<r<n-1 n

It is clear that det(A?) = det(A)? = (—1)"%1 P2. But we just proved that
n(n—=1) n

det(A?) = (—1)HT_1n". Therefore, P, = n? and det(A) =i z n2.
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The Trace of A

Recall that

n—1
tr(A) = ¢
r=0
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The Trace of A

Recall that
n—1
2
=> G
r=0

From this it follows that

n—1
|tr Z Cr _s? _ Z Cr(,rJrs)(rfs)

r,s=0 r,s=0
n—1n—-1

:chrgﬂrk)t (t:r—s)
t=0 s=0

= n’

which gives [tr(A)| = /n.
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The Magic Continues!

Let us revisit

- O O O >
- O O O o
- O O O o
3 O OO
- O3 OO
- O O 33 O

0 n 0 .. 00 0

One can show that A* = n?/ and that A? has eigenvalues n with
multiplicity (n+ 1)/2 and —n with multiplicity (n — 1)/2.
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The Magic Continues!

Let us revisit

O O O >
o O O O
o O O O
3 O OO
o 3 © O
o O 3 O

A2

0 n 0 .. 00 0

One can show that A* = n?/ and that A? has eigenvalues n with
multiplicity (n+ 1)/2 and —n with multiplicity (n — 1)/2.
Suppose that A has eigenvalues i¥\/n with multiplicity a, for each
k €{0,1,2,3}. Then

n+1 n—1
ao+32:? and a1 +a3 = >
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The Magic Continues!

Since tr(A) = [(ap — a2) + i(a1 — a3)]y/n, we have
n = [tr(A)]* = [(a0 — a2)* + (a1 — a3)’]n,

which yields
(a0 — 32)2 + (a1 — a3)2 =1.
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The Magic Continues!

Since tr(A) = [(ap — a2) + i(a1 — a3)]y/n, we have

n = |tr(A)* = [(a0 — 22)* + (a1 — a3)]n,

which yields
(a0 — 32)2 + (a1 — a3)2 =1.

Moreover,

n(n—1) n 3 N

i~ 2 n2 = det(A) = H(,‘kﬁ)ak — I'a1+2az+3a3n§’

k=0
which implies
n(n

-1
ar +2ay+3a3 = 2) (mod 4).
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The Trace of A

In summary, we have proved the following:

(1]
Zén [(20 — a2) + i(a1 — a3)]V/n.

(2]

ag + a —L—H and a; + a _n-l

0ta=— 1ta=——
(3]

(ap — 32)2 + (a1 — 33)2 =1, ax € Z>o.
Q

-1
a1 +2ay + 3a3 = n(n2) (mod 4).

Combining these four facts, one can obtain

n, if n=1 (mod 4),
;Cn _{ iv/n, if n =3 (mod 4).
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Gauss Sums

For m € Z and n € N, we define

n—1
Sa(m) == "¢,
r=0

so that tr(A) = Sp(1).
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Gauss Sums

For m € Z and n € N, we define

n—1
Sp(m) = Z C,rfm,
r=0

so that tr(A) = Sp(1).

Proposition 3.1

Given m,n € N with gcd(m, n) = 1, we have 5,,(n)Sp(m) = Smn(1).
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Gauss Sums

For m € Z and n € N, we define

n—1
Sp(m) = Z C,rfm,
r=0

so that tr(A) = Sp(1).

Proposition 3.1

Given m,n € N with gcd(m, n) = 1, we have 5,,(n)Sp(m) = Smn(1).

Let p be an odd prime. We define the Gauss sum G,(m) by

or-5()

r=0
Clearly, Go(m) =0if p | m.
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Gauss Sums

The relationship between S and G can be deduced as follows:

Sp(m) = ggjm - pz_:l (1 + <;>> ™ — Gp(m).

r=0
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Gauss Sums

The relationship between S and G can be deduced as follows:

S5(m) — gcim -5 (1+(2)) & = Gotm

r=0

Moreover, the values of G,(m) are completely determined by (m/p) and
Gp(1):
e m\ &= (rm
G.(m) = 7 m __ rm
o(m) Z(,(P)p <p>;<p>”

provided that p { m.
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Proof of Quadratic Reciprocity

Let p and g be distinct odd primes. We have seen that

S5(1) = Gy(1) = tr(A) = §(p) /P

for n = p, where

1, if p=1 (mod 4),
i if p=3 (mod 4).
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Proof of Quadratic Reciprocity

Let p and g be distinct odd primes. We have seen that

S5(1) = Gy(1) = tr(A) = §(p) /P

for n = p, where

1, if p=1 (mod 4),
o(p) =3 . P ( )
i if p=3 (mod 4).

By Proposition 3.1, we have
3(6a)5 = Gral1) = Gol)o(a) = () () o)1)
= <”> <"> 5(p)3(q)+/Pa. Q.E.D.

q p
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Steve Fan

The fundamental theorem must
certainly be regarded as one of

the most elegant of its type.

GSS

— C. F. Gauss
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